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Works discussed in this talk

• H, Reing, Ver Steeg, Galstyan. Improving generalization by controlling label-noise information
in neural network weights. ICML 2020.

• H, Achille, Paolini, Majumder, Ravichandran, Bhotika, Soatto. Estimating informativeness of
samples with smooth unique information. ICLR 2021.

• H, Raginsky, Ver Steeg, Galstyan. Information-theoretic generalization bounds for black-box
learning algorithms. NeurIPS 2021.

• H, Ver Steeg, Galstyan. Formal limitations of sample-wise information-theoretic
generalization bounds. IEEE ITW 2022.
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Why and how do neural networks generalize?
Information-theoretic perspective

• How to measure information?

• What kind of information should we measure?

• How to quantify memorization?

• How to reduce some forms of memorization?

• How is information captured by neural networks related to generalization?
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Learning setting

1. Input space Z = X × Y, with Y = {1, 2, . . . ,C}.

2. Training set S = (Z1, . . . ,Zn) consisting of n i.i.d. samples from a distribution PZ on Z.

− X ≜ (X1, . . . ,Xn), Y ≜ (Y1, . . . ,Yn).

3. Hypothesis space W.

4. Training algorithm QW |S (a probability kernel), which takes a training set and returns a distribution
on hypotheses.

5. Loss function ℓ : W ×Z → R.

6. Empirical risk: rS(w) = 1
n

∑n
i=1 ℓ(w ,Zi ).

7. Population risk: R(w) = EZ ′∼PZ
[ℓ(w ,Z ′)].
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Label-noise memorization
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Label-noise information can be measured by I (W ;Y | X ).

• ERM with cross-entropy loss maximizes label-noise information.

• Small I (W ;Y | X ) implies prediction “mistakes” on incorrectly labeled examples.

• Minimizing I (W ;Y | X ) improves a generalization gap bound.
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Label-noise memorization

The proposed method for limiting label-noise information

We derive a training algorithm that minimizes empirical risk subject to limited label-noise information
I (W ;Y | X ).

Method
no noise uniform noise pair noise

0% 20% 40% 60% 80% 10% 20% 30% 40%

ERM with cross entropy loss 92.7 85.2 81.0 69.0 38.8 90.0 88.1 87.2 81.8
Proposed 93.3 92.2 90.2 82.9 44.3 93.0 92.3 91.1 90.0

Table 1: Test accuracy comparison on CIFAR-10, corrupted with various label noise types.
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A more general notion of memorization
How much information does a particular example provide to the training of a neural network?

High-level summary of our work

We propose to consider I (W ;Zi = zi | Z−i = z−i ) or its function space analog

I (Ŷ ;Zi = zi | Z−i = z−i ,X = x) as a measure of memorization/informativeness.

• Not necessarily harmful memorization.

• Relates to the question “what will happen if remove the example?”.
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Which examples are most informative?

(a) Least informative examples
cat cat cat dog cat dog cat cat cat dog

(b) Most informative examples

dog cat dog dog cat cat dog cat dog dog

(c) Histogram of informativeness scores

Main findings

• Most examples have small information content.

• Outliers, hard examples, and rare examples are
more informative.

• Examples with incorrect labels are informative
(as their label is memorized).

• Different networks agree well on which
examples are informative.

• Examples of challenging datasets are more
informative on average.
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Information-theoretic generalization bounds

Theorem (Xu & Raginsky 1; Bu, Zou, Veeravalli 2)

Let W ∼ QW |S . If ℓ(w , z) ∈ [0, 1] then

|ES,W [R(W )− rS(W )]|︸ ︷︷ ︸
exp. generalization gap

≤ 1

n

n∑
i=1

√
1

2
I (W ;Zi )

≤
√

1

2n
I (W ;S)

≤ 1

n

n∑
i=1

√
1

2
I (W ;Zi | Z−i ).

2
Xu and Raginsky. Information-theoretic analysis of generalization capability of learning algorithms. NeurIPS 2017.

2
Bu, Zou, Veeravalli. Tightening mutual information-based bounds on generalization error. IEEE JSAIT 2022
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High-level summary of our contribution

Our main contribution
We derive generalization bounds based on the information contained in predictions rather than weights.
The core idea is to encode the learned function with a random variable.

A general learning algorithm setting:

• The learning algorithm f : Zn ×X × E → Ŷ that takes a training set z , a test input x ′, an auxiliary
argument ε capturing any stochasticity, and outputs a prediction f (z , x ′, ε) on the test example.

• ℓ : Ŷ × Y → R measures the discrepancy between a prediction and a label.

• Empirical risk: rS(f ) =
1
n

∑n
i=1 ℓ(f (S ,Xi , E),Yi ).

• Population risk: R(f ) = EZ ′∼PZ
[ℓ(f (S ,X ′, E),Y ′)].
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The setting of Steinke and Zakynthinou (2020)3

• Let Z̃ ∈ Zn×2 be a collection of 2n i.i.d. samples from P,
grouped into n pairs.

• J ∼ Uniform({0, 1}n) specifies which example to select from
each pair to form the training set:

S = (Z̃i,Ji )
n
i=1.

Example 1

J = (0, 0, 1, 1, 0)

Z̃J

Z̃1,0 Z̃1,1

Z̃2,0 Z̃2,1

Z̃3,0 Z̃3,1

Z̃4,0 Z̃4,1

Z̃5,0 Z̃5,1

3Steinke and Zakynthinou. Reasoning about generalization via conditional mutual information. COLT 2020.
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Functional CMI generalization gap bound

Theorem

If ℓ(ŷ , y) ∈ [0, 1],∀ŷ ∈ Ŷ, y ∈ Y, then∣∣∣EZ̃ ,J,E [R(f )− rS(f )]
∣∣∣︸ ︷︷ ︸

exp. generalization gap

≤ 1

n

n∑
i=1

Ez̃∼Z̃

√
2I ( f (z̃J , x̃i , E) ; Ji )).

predictions on the i-th pair
train-test split
variable of the i-th pair

Benefits:

• The right-hand side depends on MIs between low-dimensional variables.

• Finite VC dimensionality d implies an Õ(
√

d/n) information-theoretic bound.

• On-average stability implies a small information-theoretic bound.
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Experimental Results

Setup: MNIST 4 vs 9 classification with 4-layer
CNN (3M parameters, deterministic algorithm).
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Setup: Fine-tuning a pretrained ResNet-50 on
CIFAR-10 (SGD with momentum + data
augmentations).
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Expected vs expected squared generalization gap bounds

Expected generalization gap bounds:

|ES,W [R(W )− rS(W )]| ≤ c

n

n∑
i=1

√
I (W ;Zi )︸ ︷︷ ︸

sample-wise bound

≤ c

√
I (W ;S)

n︸ ︷︷ ︸
whole dataset information bound

.

Expected squared generalization gap bounds:4,5

EW ,S

[
(R(W )− rS(W ))2

]
≤ a sample-wise bound? ≤ I (W ;S) + c

n︸ ︷︷ ︸
whole dataset information bound

.

5
Harutyunyan, Raginsky, Ver Steeg, Galstyan. Information-theoretic generalization bounds for black-box learning algorithms. NeurIPS 2021.

5
Aminian, Toni, Rodrigues. Information-theoretic bounds on the moments of the generalization error of learning algorithms. IEEE ISIT 2021.
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A limitation of sample-wise information measures

Main results

1. Sample-wise expected squared, PAC-Bayes, and single draw generalization bounds do not exist.

2. Starting at subsets of size 2, there are expected squared generalization gap bounds that measure
information between W and a subset of examples.

ES,W

[
(R(W )− rS(W ))2

]
≤ 1

n
+

1

n2

∑
i ̸=k

√
2I (W ;Zi ,Zk).

3. These results hold for more advanced sample-wise bounds as well.
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Thank you

Alessandro Achille

Maxim Raginsky

Rahul Bhotika

Avinash Ravichandran

Orchid Majumder

Kyle Reing

Giovanni Paolini

Stefano Soatto

Greg Ver Steeg Aram Galstyan
Find me at hrayrhar.github.io
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